ACS Medicinal Chemistry Letters

Correction

Correction to Rapid Determination of Ionization Constants (pK_a) by UV Spectroscopy Using 96-Well Microtiter Plates

Carlos H. Ríos Martínez and Christophe Dardonville*

ACS Med. Chem. Lett. 2013, 4 (1), 142-145. DOI: 10.1021/ml300326v

Four additional references have been added to the reference section, and the last column of Table 1 has been updated with the correct references.

Table 1. pK_a Values of Monoacidic, Monobasic, and Dibasic Compounds Determined by the 96-Well UV Spectrophotometric Method

Cpd	Structure	Solvent ^a	$\lambda (nm)^b$	Measured ^c pK_a	$\begin{array}{c} \text{Mean value} \\ \pm \text{SD}^d \end{array}$	Lit. value ^e	Ref.
1		H ₂ O	318/400	7.01 7.02 7.02	7.02 ± 0.01	7.16	18
		H ₂ O + 2% DMSO	318/400	6.84 6.88 6.90	6.87 ± 0.03	na	na
2	₩ N H H CH ₃	H ₂ O + 2% DMSO	268/280	6.20 6.27 6.21 6.20	6.22 ± 0.03	6.23	19
3	O₂N Ĩ	H ₂ O + 2% DMSO	297/354	9.22 9.17 9.20	9.20 ± 0.03	9.3	20
4		H2O + 2% DMSO	244/312	8.15 8.24 8.05	8.14 ± 0.09	8.12 8.04	21
5	NH ₂ NH	H ₂ O + 2% DMSO	250/390	10.63 10.72 10.75	10.70 ± 0.06	10.4	16

^{*a*}The use of 2% v/v DMSO as cosolvent did not alter significantly the pK_a value of the test compounds. Working temperature = 30 °C. All pK_a were measured at constant ionic strength (I = 0.1 M) and concentration (C = 0.2 mM). ^{*b*}Analytical wavelengths are determined at the maximum and minimum absorption values in the spectral difference plot. ^cExperiments were repeated at least three times. ^{*d*}Standard deviation. ^{*e*}Experimental pK_a values at 25 °C in water.

REFERENCES

(16) Nagle, P.; Kahvedžić, A.; McCabe, T.; Rozas, I. On the protonated state of amidinium-like diaromatic derivatives: X-ray and UV studies. *Struct. Chem.* **2011**, 1–9.

(17) Kinsella, G. K.; Rodriguez, F.; Watson, G. W.; Rozas, I. Computational approach to the basicity of a series of [alpha]1-adrenoceptor ligands in aqueous solution. *Bioorg. Med. Chem.* **2007**, *15*, 2850–2855.

(18) Izutsu, K. IUPAC: Acid–Base Dissociation Constants in Dipolar Aprotic Solvents; Blackewell Science: New York, 1990.

(19) Donkor, K. K.; Kratochvil, B. Determination of thermodynamic aqueous acid—base stability constants for several benzimidazole derivatives. *J. Chem. Eng. Data* **1993**, 38, 569–570.

(20) Schofield, K.; Grimmett, M. R.; Keene, B. R. T. *The Azoles*; Cambridge University Press: Cambridge, U.K., 1976.

(21) Tam, K. Y.; Takács-Novák, K. Multi-wavelength spectrophotometric determination of acid dissociation constants: a validation study. *Anal. Chim. Acta* **2001**, *434*, 157–167.

Published: October 30, 2013